在线视频国产欧美另类,偷拍亚洲一区一区二区三区,日韩中文字幕在线视频,日本精品久久久久中文字幕

<small id="qpqhz"></small>
  • <legend id="qpqhz"></legend>

      <td id="qpqhz"><strong id="qpqhz"></strong></td>
      <small id="qpqhz"><menuitem id="qpqhz"></menuitem></small>
    1. 北師大數(shù)學必修三知識點

      時間:2021-12-13 10:29:02 總結 我要投稿

      北師大數(shù)學必修三知識點

        在日常的學習中,是不是經(jīng)常追著老師要知識點?知識點就是掌握某個問題/知識的學習要點。相信很多人都在為知識點發(fā)愁,以下是小編幫大家整理的北師大數(shù)學必修三知識點,僅供參考,歡迎大家閱讀。

      北師大數(shù)學必修三知識點

      北師大數(shù)學必修三知識點1

        (1)指數(shù)函數(shù)的定義域為所有實數(shù)的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。

        (2)指數(shù)函數(shù)的值域為大于0的實數(shù)集合。

        (3)函數(shù)圖形都是下凹的。

        (4)a大于1,則指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,則為單調(diào)遞減的。

        (5)可以看到一個顯然的規(guī)律,就是當a從0趨向于無窮大的過程中(當然不能等于0),函數(shù)的曲線從分別接近于Y軸與X軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于Y軸的正半軸與X軸的負半軸的單調(diào)遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。

        (6)函數(shù)總是在某一個方向上無限趨向于X軸,永不相交。

        (7)函數(shù)總是通過(0,1)這點。

        (8)顯然指數(shù)函數(shù)無界。

        奇偶性

        定義

        一般地,對于函數(shù)f(x)

        (1)如果對于函數(shù)定義域內(nèi)的任意一個x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù)。

        (2)如果對于函數(shù)定義域內(nèi)的任意一個x,都有f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù)。

        (3)如果對于函數(shù)定義域內(nèi)的任意一個x,f(-x)=-f(x)與f(-x)=f(x)同時成立,那么函數(shù)f(x)既是奇函數(shù)又是偶函數(shù),稱為既奇又偶函數(shù)。

        (4)如果對于函數(shù)定義域內(nèi)的任意一個x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那么函數(shù)f(x)既不是奇函數(shù)又不是偶函數(shù),稱為非奇非偶函數(shù)。

      北師大數(shù)學必修三知識點2

        1、柱、錐、臺、球的結構特征

        (1)棱柱:

        定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

        分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱柱、四棱柱、五棱柱等。

        表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱。

        幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的'截面是與底面全等的多邊形。

        (2)棱錐

        定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體。

        分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱錐、四棱錐、五棱錐等

        表示:用各頂點字母,如五棱錐

        幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。

        (3)棱臺:

        定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。

        分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱態(tài)、四棱臺、五棱臺等

        表示:用各頂點字母,如五棱臺

        幾何特征:①上下底面是相似的平行多邊形②側面是梯形③側棱交于原棱錐的頂點

        (4)圓柱:

        定義:以矩形的一邊所在的直線為軸旋轉,其余三邊旋轉所成的曲面所圍成的幾何體。

        幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。

        (5)圓錐:

        定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體。

        幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側面展開圖是一個扇形。

        (6)圓臺:

        定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

        幾何特征:①上下底面是兩個圓;②側面母線交于原圓錐的頂點;③側面展開圖是一個弓形。

        (7)球體:

        定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體

        幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。

        2、空間幾何體的三視圖

        定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側視圖(從左向右)、俯視圖(從上向下)

        注:正視圖反映了物體上下、左右的位置關系,即反映了物體的高度和長度;

        俯視圖反映了物體左右、前后的位置關系,即反映了物體的長度和寬度;

        側視圖反映了物體上下、前后的位置關系,即反映了物體的高度和寬度。

        3、空間幾何體的直觀圖——斜二測畫法

        斜二測畫法特點:

       、僭瓉砼cx軸平行的線段仍然與x平行且長度不變;

        ②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

        北師大數(shù)學必修三學習方法

        1.做好準備,提出問題,多次閱讀課本,查閱相關材料,回答自己提出的問題,并在老師談論新課之前努力掌握盡可能多的知識。如果你不能回答問題,你可以在老師的講座中解答。

        2。學會聽課。在初中教學中,教師經(jīng)常反復講解一個知識點,讓學生通過大量的練習掌握它。但是高中畢業(yè)后,老師不會讓學生通過大量的練習掌握知識點,而是通過一些相關的知識來引導學生去理解。這些知識是如何產(chǎn)生的,以及如何利用這些知識來解決一些相關的疑問?如果學生能夠理解,他們可以通過課外練習鞏固自己的知識。同時,學生可以根據(jù)教師的指導擴大知識。

        為自己在聽課的過程中,當然,不能理解的知識,可以用來分析舉手讓老師解釋,也使相關記錄,課后進一步理解;在預覽他們的問題,如果老師不解決,可以利用業(yè)余時間去問老師來解決,這樣的學習可以學習更多的知識。

        聽每一分鐘,特別是老師講課的開頭和結尾

        在老師講課開始時,他通常會總結上一節(jié)課的要點,并指出這節(jié)課的內(nèi)容。它是把舊知識和新知識聯(lián)系起來的一個環(huán)節(jié),它的結尾往往是對一門課所提供的知識的總結,這是非常普遍的。是基于對這部分知識的理解而提出的提綱的方法。

        北師大數(shù)學必修三學習技巧

        首先:課前復習。就是上課前花兩三分鐘把書本本節(jié)課要學的內(nèi)容看一遍。僅僅是看一遍,過一遍。這樣上課老師講自己不但可以跟上老師節(jié)奏還可以再次鞏固。其余不要干其他多余的事。

        其次:上課時候一定要專心聽講,如果覺得老師這里講得都懂了的話可以自己翻書看后面的內(nèi)容。做習題的時候一定要一道一道往過做,不要越題做。因為對于課本來說這些都是基礎,只有基礎完全掌握后才能做難題。上課過程中第一次接觸到的知識點概念等,一定一定要當堂背過。不然以后很難背過,不要妄想考前抱佛教再背

        另外要把筆記記準確,知道自己需要記什么不需要記什么,憋一個勁地往書上搬。字不要求整齊,自己能看懂就行。課本資料書上有例題,多看多記方法。先看課本基礎,在看資料書上著重的。例題的方法一定一定要理解,不要去背!接著下課再看筆記,只是略微鞏固記住。

      【北師大數(shù)學必修三知識點】相關文章:

      1.數(shù)學必修三統(tǒng)計知識點

      2.高一數(shù)學必修一知識點總結

      3.高中數(shù)學必修四知識點總結

      4.語文必修三琵琶行知識點

      5.語文必修三紅樓夢的知識點

      6.高一必修一數(shù)學知識點總結大全

      7.北師大高一英語必修2教學課件

      8.必修五語文第三課邊城知識點