在线视频国产欧美另类,偷拍亚洲一区一区二区三区,日韩中文字幕在线视频,日本精品久久久久中文字幕

<small id="qpqhz"></small>
  • <legend id="qpqhz"></legend>

      <td id="qpqhz"><strong id="qpqhz"></strong></td>
      <small id="qpqhz"><menuitem id="qpqhz"></menuitem></small>
    1. 抽象函數(shù)的全面探析論文

      時間:2021-06-11 13:19:50 論文 我要投稿

      有關抽象函數(shù)的全面探析論文

        摘要:抽象函數(shù)是函數(shù)中的一類綜合性較強的問題。這類問題不僅能考查學生的數(shù)學基礎知識,更能考查學生的數(shù)學綜合能力。

      有關抽象函數(shù)的全面探析論文

        關鍵詞:抽象函數(shù);定義域;值域;對稱性

        抽象函數(shù)是一種重要的數(shù)學概念。我們把沒有給出具體解析式,其一般形式為y=f(x),且無法用數(shù)字和字母的函數(shù)稱為抽象函數(shù)。由于抽象函數(shù)的問題通常將函數(shù)的定義域、值域、單調性、奇偶性、周期性和圖像集于一身。這類問題考查學生對數(shù)學符號語言的理解和接受能力、對一般和特殊關系的認識以及數(shù)學的綜合能力。

        解決抽象函數(shù)的問題要求學生基礎知識扎實、抽象思維能力、綜合應用數(shù)學能力較高。所以近幾年來高考題中不斷出現(xiàn),在2009年的全國各地高考試題中,抽象函數(shù)遍地開花。但學生在解決這類問題時常常感到束手無策、力不從心。下面通過例題全面探討抽象函數(shù)主要考查的內容及其解法。

        一、抽象函數(shù)的定義域

        例1已知函數(shù)f(x)的定義域為[1,3],求出函數(shù)g(x)=f(x+a)+f(x-a) (a>0)的定義域。

        解析:由由a>0

        知只有當0<a<1時,不等式組才有解,具體為{x|1+a<x≤3-a;否則不等式組的解集為空集,這說明當且僅當0<a<1時,g(x)才能是x的函數(shù),且其定義域為(1+a,3-a]。

        點評:1.已知f(x)的定義域為[a,b],則f[g(x)]的定義域由a≤g(x)≤b,解出x即可得解;2.已知f[g(x)]的定義域為[a,b],則f(x)的定義域即是g(x)在x[a,b]上的'值域。

        二、抽象函數(shù)的值域

        解決抽象函數(shù)的值域問題——由定義域與對應法則決定。

        例2若函數(shù)y=f(x+1)的值域為[-1,1]求y=(3x+2)的值域。

        解析:因為函數(shù)y=f(3x+2)中的定義域與對應法則與函數(shù)y=f(x+1)的定義域與對應法則完全相同,故函數(shù)y=f(3x+2)的值域也為[-1,1]。

        三、抽象函數(shù)的奇偶性

        四、抽象函數(shù)的對稱性

        例3已知函數(shù)y=f(2x+1)是定義在R上的奇函數(shù),函數(shù)y=g(x)的圖像與函數(shù)y=f(x)的圖像關于y=x對稱,則g(x)+ g(-x)的值為( )

        A、 2 B、 0 C、 1 D、不能確定

        解析:由y=f(2x+1)求得其反函數(shù)為y=,∵ y=f(2x+1) 是奇函數(shù),∴y=也是奇函數(shù),∴! , ,而函數(shù)y=g(x)的圖像與函數(shù)y=f(x)的圖像關于y=x對稱,∴g(x)+ g(-x)=故選A 。

        五、抽象函數(shù)的周期性

        例4、(2009全國卷Ⅰ理)函數(shù)的定義域為R,若與都是奇函數(shù),則( )

        (A) 是偶函數(shù) (B) 是奇函數(shù)

        (C) (D) 是奇函數(shù)

        解: ∵與都是奇函數(shù),,

        函數(shù)關于點,及點對稱,函數(shù)是周期的周期函數(shù).,,即是奇函數(shù)。故選D

        定理1.若函數(shù)y=f (x) 定義域為R,且滿足條件f (x+a)=f (x-b),則y=f (x) 是以T=a+b為周期的周期函數(shù)。

        定理2.若函數(shù)y=f (x) 定義域為R,且滿足條件f (x+a)= -f (x-b),則y=f (x) 是以T=2(a+b)為周期的周期函數(shù)。

        定理3.若函數(shù)y=f (x)的圖像關于直線 x=a與 x=b (a≠b)對稱,則y=f (x) 是以T=2(b-a)為周期的周期函數(shù)。

        定理4.若函數(shù)y=f (x)的圖像關于點(a,0)與點(b,0) , (a≠b)對稱,則y=f (x) 是以 T=2(b-a)為周期的周期函數(shù)。

        定理5.若函數(shù)y=f (x)的圖像關于直線 x=a與 點(b,0),(a≠b)對稱,則y=f (x) 是以 T=4(b-a)為周期的周期函數(shù)。

        性質1:若函數(shù)f(x)滿足f(a-x)=f(a+x)及f(b-x)=f(b+x) (a≠b,ab≠0),則函數(shù)f(x)有周期2(a-b);

        性質2:若函數(shù)f(x)滿足f(a-x)= - f(a+x)及f(b-x)=- f(b+x),(a≠b,ab≠0),則函數(shù)有周期2(a-b).

        特別:若函數(shù)f(x)滿足f(a-x)=f(a+x) (a≠0)且f(x)是偶函數(shù),則函數(shù)f(x)有周期2a.

        性質3:若函數(shù)f(x)滿足f(a-x)=f(a+x)及f(b-x)= - f(b+x) (a≠b,ab≠0), 則函數(shù)有周期4(a-b).

        特別:若函數(shù)f(x)滿足f(a-x)=f(a+x) (a≠0)且f(x)是奇函數(shù),則函數(shù)f(x)有周期4a。

        從以上例題可以發(fā)現(xiàn),抽象函數(shù)的考查范圍很廣,能力要求較高。但只要對函數(shù)的基本性質熟,掌握上述有關的結論和類型題相應的解法,則會得心應手。

        參考文獻:

        [1]陳誠.抽象函數(shù)問題分類解析[J].數(shù)理化學習·,2008(8).

      【抽象函數(shù)的全面探析論文】相關文章:

      論文有關抽象函數(shù)的全面探析05-13

      小議抽象函數(shù)的性質論文04-24

      新課標下函數(shù)概念的教學探析論文07-07

      基于新醫(yī)改背景下的全面預算管理探析論文06-24

      高等學校實踐教學全面質量管理探析論文06-24

      漆畫語言中抽象表現(xiàn)論文04-28

      全面預算管理的論文04-01

      水煤漿技術進展探析論文05-05

      螃蟹養(yǎng)殖技術探析論文05-10